skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jayasinghe, Nethmi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Autonomous edge computing in robotics, smart cities, and autonomous vehicles relies on the seamless integration of sensing, processing, and actuation for real-time decision-making in dynamic environments. At its core is the sensing-to-action loop, which iteratively aligns sensor inputs with computational models to drive adaptive control strategies. These loops can adapt to hyper-local conditions, enhancing resource efficiency and responsiveness, but also face challenges such as resource constraints, synchronization delays in multimodal data fusion, and the risk of cascading errors in feedback loops. This article explores how proactive, context-aware sensing-to-action and action-to-sensing adaptations can enhance efficiency by dynamically adjusting sensing and computation based on task demands, such as sensing a very limited part of the environment and predicting the rest. By guiding sensing through control actions, action-to-sensing pathways can improve task relevance and resource use, but they also require robust monitoring to prevent cascading errors and maintain reliability. Multi-agent sensing-action loops further extend these capabilities through coordinated sensing and actions across distributed agents, optimizing resource use via collaboration. Additionally, neuromorphic computing, inspired by biological systems, provides an efficient framework for spike-based, event-driven processing that conserves energy, reduces latency, and supports hierarchical control-making it ideal for multi-agent optimization. This article highlights the importance of end-to-end co-design strategies that align algorithmic models with hardware and environmental dynamics, improve cross-layer inter-dependencies to improve throughput, precision, and adaptability for energy-efficient edge autonomy in complex environments. 
    more » « less
    Free, publicly-accessible full text available March 31, 2026
  2. We discuss how a dual-gated memtransistor crossbar can accelerate the extraction of the Transformer’s attention scores. A memtransistor is a novel two-dimensional material-based device that offers non-volatile programmability and gate tunability. Leveraging these attributes, we demonstrate the extraction of quadratic-order products on a single memtransistor and the single-step extraction of attention scores without inferring intermediate query/key vectors. The query/key-free processing of memtransistor-based attention scoring results in 2.37× lower energy with less than half crossbar cells. 
    more » « less
  3. Abstract Reinforcement learning (RL) relies on Gaussian and sigmoid functions to balance exploration and exploitation, but implementing these functions in hardware typically requires iterative computations, increasing power and circuit complexity. Here, Gaussian‐sigmoid reinforcement transistors (GS‐RTs) are reported that integrate both activation functions into a single device. The transistors feature a vertical n‐p‐i‐p heterojunction stack composed of a‐IGZO and DNTT, with asymmetric source–drain contacts and a parylene interlayer that enables voltage‐tunable transitions between sigmoid, Gaussian, and mixed responses. This architecture emulates the behavior of three transistors in one, reducing the required circuit complexity from dozens of transistors to fewer than a few. The GS‐RT exhibits a peak current of 5.95 µA at VG= −17 V and supports nonlinear transfer characteristics suited for neuromorphic computing. In a multi‐armed bandit task, GS‐RT‐based RL policies demonstrate 20% faster convergence and 30% higher final reward compared to conventional sigmoid‐ or Gaussian‐based approaches. Extending this advantage further, GS‐RT‐based activation function in deep RL for cartpole balancing significantly outperforms the traditional ReLU‐based activation function in terms of faster learning and tolerance to input perturbations. 
    more » « less